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Preface

't'his report describes research into several areas of groundwater model-
ing. The primary focus of this work is basic research on computational al-
gorithms, but a secundary aspect is a study of the use of scientific
visualization technology. The work was funded unde: the In-House Labo-
ratory Independent Research (ILIR) program at the U.S. Army Engineer
Waterways Experiment Station (WES), Vicksburg, MS. Additional re-
search and the publication of this report were funded by the Strategic Envi-
ronmental Research and Development Program (SERD?P), Department of
Defense.

Dr. James H. May and CPT Edward Mazion, Engineering Geology
Branch, Earthquake Engineering and Geophysics Division, Geotechnical
Laboratory (GL), WES, performed the 2-D Rocky Mountain Arsenal
(PMA) study described in this report. Mr. John B. Palmerton, Rock Me-
chanics Branch, Soil and Rock Mechanics Division, GL, WES, performed
the analysis of Cerrillos Dam in Puerto Rico discussed in this report.
Most of the scientific visualization work for RMA was done by Mr. Scott
Weberg, Scientific Visualization Center (SVC), Advanced Technology
Center (ATC), Information Management Division (IMD), Information
Technology Laboratory (ITL), WES. Mr. Charles S. Jones, SVC, ATC,
IMD, ITL, WES, assisted in the visualization for contaminant transport.
Cray Y-MP improvements were made by Mr. Alex Carrillo, Department of
Defense High Performance Computing Center, ATC, IMD, ITL, WES.

Dr. Fred T. Tracy, Interdisciplinary Research Group, Computer-Aided En-
gineering Division (CAED), ITL, WES, wrote this report (Mr. Carrillo pro-
vided an excellent draft documenting his work) and performed the

Arncreihad bhrnone s - e~ | 7 N Ry, A el Fal Ty
remaining work described hercin. Di. Reed L. Mosher was Acting Cilied

of CAED during this study and preparation of this report, and Director ot
ITL was Dr. N. Radhakrishnan.

This work was coordinated with the WES Groundwater Modeling Team
whose chairman is Dr. Jeffery P. Holland, Director, Computational Hydrau-
lics Iastitute, Hydraulics Laboratory, and Program Manager, Groundwater
Modeling Program.




At the time of publication of this report, Director of WES was
Dr. Robert W. Whalin. Commander was COL Bruce K. Howard, EN.
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i The contents of this report are not to be used for ndvertising, publication,
l or promotional purposes. Citation of irade names does not constitute an
official endorsement or appraval of the use of such commercial producis.




1 Introduction

T

Why This Research?

The flow of groundwater is an extremely complex process to model be-
cause of the diverse types of flow and the hcterogeneous nature of the po-
rous media. When the transport of diverse types of contaminants is added
to the probiem, the difficulty and complexity of modeling real-world three-
dimensional (3-D) groundwater flow increases by orders of magnitude.
Also, it is very difficult to visualize groundwater irput and output into nu-
merical programs because ot the complexity of the geometry and heteroge-
neity of the porous medium. This report documents basic and applied
research in the area of groundwater modeling and visualization.
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Cray Y-MP

The use of a supercomputer such as a Cray Y-MP is also essential for
the timely computation of results of a large 3-D groundwater model. This
is becausc the highly nonlincar nature of the soil properties in the unsatu-
rated zone creates a tremendous computational load, and traditional tech-
niques do several iterations at cach time-step in an attempt to achicve
suitable answers. Further complications arise because groundwater flow
is sometimes modeled over extremely long periods of time, putting an ad-
ditional requirement that the numerics remain stable and robust. This re-
port describes research findings in this area as well.

.~_-___m.v -

Scientific Visualization

| The use of graphical tools to visualize both the input data (grid with ini-
o tial and boundary conditions) and the results (pressure, head, velocity, con-
~{ centiration, etc.) is absolutely essential for successful modeling. This

report also describes the scientific visualization techniques developed in
this research.

Chaptar 1 Introduction
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Chapter Summaries

Chapter 2 uses the application of the real-world proolem of flow near
Rocky Mountain Arscnal (RMA) to help answer the question of when a
3-D analysis is needed. A comparison of a two-dimensional (2-D) plan
view time-dependent solution taken to steady state to a true 3-D saturated
flow solution where the phreatic surface is iterated to the steady- state solu-
tion is presented. Both these solutions usc the finite element method
(FEM). The details of what was done to create the 3-D FEM program and
data are given. Examples 0 how visualization was uscd are also given.

The running times for the 3-D saturated flow steady-state RMA prob-
lem using classical FEM solution techniques showed that f-r 3-D, time-
dependent, nonlincar problems involving unsaturated or multiphasc flow
with contaminant transport, the running times cven on the Cray Y-MP
could possibly become prohibitive. Therefore, Chapters 3 and 4 describe
basic rescarch into other techniques that arc potentially faster and, for
those problems where they can be applied, should deliver an equivalent
quality answer much more efficiently. Specifically, the finite volume
(FV) method is first applied to saturated/unsaturated flow and then to con-
taminant transport and compared to classical FEM solutions. The tech-
niques of nonlincar iteration, operator splitting, etc., are also discussed.
Both experimental results and analytical solutions are used to compare dif-
ferent procedures. Finally, contaminant transport results are viewed using
scientific visualization tools.

Chapter 1 Introduction




2 Saturated Flow

introduction

Engineers and scientists at the Geotechnical Laboratory (GL), U.S.
Army Enginecr Waterways Experiment Station (WES), have made a study
of flow in the RMA region. The program used for the study is a modified
version of a 2-D plan view saturated and confined flow FEM code
(Warner 1987) that accepts a triangular grid. This report describes three
additional things that were done as follows:

a. Three-dimensional study. A 3-D grid was built from the given 2-D
data, and a 3-D FEM unconfined, saturated flow program was ap-
plied to the same problem with the 2-D and 3-D results then com-
pared. This was done to help answer the question of when a 3-D
solution is required for a given problem.

b. Cray Y-MP optimization. Special vectorization techniques were in-
vestigated to see what improvements in running times could be
achiev.d over the generic Unix version of the 3-D code. Computa-
tional improvements valid for any scientific computer were also
made.

¢. Scientific visualization., Scientilic visualization techniques were ap-
plied to the RMA data.

The 3-D computations werz done on a Cray Y-MP using a modified ver-
sion of a 3-D seepage/groundwater FEM program (Tracy 1991). Scicn-
tific viscalization tools used were commercial programs such as
Multi-Purpose Graphics System (MPGS) (Cray 1990) and custoinized soft-
ware developed in the Scientific Visualization Center (SVC), WES. All
scientific visualization was done on Silicon Graphics workstations.

Chapter 2 Saturated Flow




Description of Problemn

The problem consists of partially confined and partially unconfined
groundwater flow in a region near RMA. The 2-D triangular mesh used
for the problem is shown in Figure 1. The nodes with triangles have
heads specified as a boundary conditicn, and the nodes identified with cir-
cles are observation wells where differing amounts of water are being ex-
tructed. The immediate purpose of the compi.  10n is a calibration where
the unknown hydraulic conductivities are adjusted so thai the initial heads
remain the final heads after the problem is run to a steady-state solution.
A slurry trench has been installed in the flow region to modify flow, and a
zoom of the grid for this region is shown in Figure 2. The slurry trench is
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Figure 1. FEM grid with boundary conditions
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Figure 2. Zoomed area showing slurry trench

identified by all the nodes along line segment AB. An impervious wall
such as a slurry trench is modeled by having d.fferent nodes on one side
of the wall as compared to the other side. This particular slurry trench has
many more ncdes on the left side than on the right side.

There are two basic layers which are alluvium and bedrock. The hy-
draulic conductivities, however, vary greatly within these two broad calte-
gories of material. Figure 3 shows a color contour plot of the hydraulic
conductivity of the alluvium, and Figure 4 shows a color contour plot of
the hydraulic conductivity of the bedrock. Figure § shows a color contour
plot of the initial tot il head values. The problem is now completely
specified.

Chapter 2 Saturaled Flow
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Figure 5. Initial head values

2-D Results

Figure 6 shows the results of one of the intermediate calibrations. The
amount of drawdown is small in most places, but there are still some “hot
spots” to fix. It is clear that the color contour plot is an excellent tool to
quickly determine the arcas that need more work. The linal calibration
will be presented in the GL report to RMA. The purposes of this chapter
are well served by using these intermediate results, and the problem of
using possibly proprietary information is avoided.

Chapter 2 Saturaled Flow
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Figure 6. Intermediate calibration drawdown results
3-D Study

At this point a study was begun to determine how important a true 3-D
solution is and how to visualize the 3-D results. Cray optimization was
also investigated by personnel in the DoD High Performance Computing
(HPC) Center group in ITL.

o

b 3-D gtid

| ¢

! | A 3-D grid was generated {from the 2-D data by adding intermediate lay-

b ers (sce the hidden line view of the grid shown in Figure 7) by converting

o

o
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the same as the speaitied hewd esee Brgare 9, and anly the tastbine 3D
& venctated nodes are poven the specihied heads Tn Bihe mannern o 2 D node
with head specified i the bedrock has the elesaton of the second gene

ated VD node modihied o tee speciiied head vidue. and only the fist two
renerated 3D nodes are given the speciied head.

A2 D node where an observatton swell evists and the 1Tow Qs specr

fred ina contined tlow regron has low distributed over the pencrated 3-D
nodes as il cach ot the vertical hine seaments i the alluvium eollects the
same amount ol water. That s, generated 321D nodes 3 and 7 have (/8
speatbreds and generated 3 1 nodes 4 throueh 6 have QA specilied. Tora
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1

2 D uncontined flow regron node where the initial water Tevebis in the
alluy i

a. Adjust elevarions, Fhe elevations of cenerated 22D nodes 4 and 3
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nodes 3and 5 have Q44 and generated 3-D node d has Q72 applied.
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Figure 8. 2-D triangles converted to 3-D prisms
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Figure 9. Specified head in alluvium
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Since this is a calibration at a rather late stage, step g was not repeated at
cach iteration in the 3-D groundwater program to find the free surface.
However, this shouid be incorporated into the program for doing studies
beyond the calibration.

For an unconfined flow situation where the water table is in the bed-
rock, the elevation of generated 3-D node 2 is given the value of the water
clevation, and the given Q is divided equally between generated 2-D
nodes | and 2.

3-D groundwater model

The 3-D groundwater model used in this study is a modification of one
written by this author for 3-D stcady-state, unconfined saturated flow.
The modifications required are as follows:

a. Hydraulic conductivity daia. Typically, in an FEM program, the
material propertics are specified separately, and each set is given a
number. For instance, material type 1 can represent sand, and mate-
rial type 2 can represent clay. Thus, each element has a material
type number specified, and those values specified remain constant
inside the given element. The data for RMA is different. There
were provided one hydraulic conductivity for bedrock and one hy-
draulic conductivity for alluvium for each 2-D node. Therefore, no
data were provided for element properties, but the node data were
extended to include the two hydraulic conductivities. However,
cach element still had to be identified as being either bedrock or
alluvium,

b. Stiffness matrix computation. Since hydraulic conductivity is not
constant inside cach :lement, the stiffness matrix computation had
to be modified. The material type number for each element now
represents either | for bedrock or 2 for alluvium. The finite ele-
ment type uscd in the 3-D model requires numerical integration to
form the stiffness matrix. So at integration point j, the hydraulic
conductivity &/ is computed using the eight-node isoparametric ele-
ment formulation

8
o= 2 Nik; (1)

i=1

The interpolation functions are

1 ) .
N,‘j =3 (1 + &,gj) (r+ T],'ﬂj) (I + C,'Sj) (2)

Chapter 2 Saturated Flow




where
. -1<E<1 .
-1<n <1
-1<{<1 ]

&n i &) = (&, 1, §) coordinates at node i
(& ;. &) = (& 0. §) coordinates at interpolation point j
k; = hydraulic conductivity at node i ';-";'.'
¢. MPGS files. MPGS files were written for the original grid, the mod-

ified grid that conforms to the free surface, a scaler file containing
total head, and a vector file containing Darcian velocities.

e

Visualization of 3-D results

After a valid 3-D grid was produced and a correct 3-D groundwater
model was completed, the 3-D results were obtained. It is, of course, now
very important to visualize the resulting voluminous set of output data. It :
is extremely difficult to visualize 3-D groundwater flow for the foliowing
three rcasons: R

a. Relatively flat grid. The 3-D grid in the z direction is extremely flat
compared to the plan view, ’

b. No specific object. In computational fluid dynamics (CFD) there
are airplancs, helicopters, etc., that form an excellent background
for visualization. However, in groundwater flow no such tangible
objects exist.

¢. Heterogeneity. In CFD applications therc is only a single homoge-
ncous medium such as air. Flow in porous media deals with signifi-
cantly different properties which, at times, varies several orders of
magnitude.

B e~ By

»

it _,_-..._m . . T

Nevertheless, the following give a good representation of the flow pattern:

a. Color contours. Color contours on visible faces used to show varia-
tion of scalar quantities.

b. Isolevels. The 3-D cquivalent of a contour plot where cach isolevel
in space is a surface representing a scalar quantity with the same
value. &t

i

{

! v
{ hd

j

i
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’ c. Particle traces. Lines in space that show the paths of particles after

being released in the purous medium.

: d. Translucency. The ability to see through an object or data to see

‘A what is behind it.

b . . .

_ e. Animation. Viewing many scenes (30 frames per second) in succes-
o sion showing movement of rotation, translation, flow, ctc.

= As examples, Figure 10 shows the hidden line plot of the grid with

total head in color contours, and Figure 11 shows the 3-D grid as translu-
" cent with three isolevels. The fact that the isolevels are essentially verti-

cal shows that there is little variation of the results in the z direction.

‘J 5.21R+02
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J Figure 10. Total head contours with the hidden line plot
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Translucent grid with isolevels

Figure 11,

15

Chapter 2 Saturated Flow

-

Vel g

-

TS el

LT S

R

bF
3
i

&

S
P
.




Tand.

==

Cray Y-MP improvements

Performance issucs were addressed by Mr. Alex Carrillo, HPC Center,
WES. For cvaluation purposes, in addition to the RMA groundwater
model, a smaller aquifer groundwater model and two different grid sizes
of the Cerrillos Dam in Puerto Rico seepage model were used (the
Cerrillos Dam study was pcerformed by Mr. John Palmerton, GL, WES).
Table | describes various aspects of the models. First, the number of
nodes and elements for cach model is given. Next, the number of nonlin-
car iterations required to obtain the stecady-state solution is given. Each it-
cration can be summarized as formulating and solving the following set of
cquations:

(Kl {ag) = - {AQ)

(3)
e . .
(o)™ = {o}' + {Ap}'
Table 1
Model Information
Carriilos Cerrlllos

Mode! RMA Aquiter (Small) (Big)
Nodes 23,513 11,578 10,915 87,572
Elements 38,796 9,855 8,469 77,124
Nonlinear Iltorations 48 5 J 8 9
Original Global Bandwidth 803 1,594 502 1,974
e e e e ——— e . — +
Original Average Local
Bandwidth 3€4 1,075 467 1,855
New Global Bandwidth 482 675 383 1,481
Now Average Local
Bandwidth 356 436 283 1,092
Original CPU 12,548 3,747 517 33,148
Original 1710 5,149 910 273 8,040
New Diraect Solver CPU 188 33 47 3,906
R i B
New Direct Solver /0O 30 1 1 1,235
New ltorative Solver CPU 594 29 21 278
New lterative Solvor 170 0 0 0 0

16
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!
where
1
1 .
o« [K}* = stiffness matrix at the i"th iteration
_‘-m . . . . . .
. {Ap)¢ = change in total head or potential vector at the i’th iteration
. {AQ})} = residual flow vector at the i’th iteration
< Because the solution is steady state, a significant savings can be achieved
& by updating [K]’ only with respect to changing boundary conditicns, and
B this is done. {AQ}' must, however, be computed using the current values
i of the element stiffness matrices.
- The initial profiling of the code revealed that the primary area affect-
ing performance was the solution process (the solution of the set of simul-

taneous linear equations in Equation 3). Not only was this part a
computational bottleneck, but the 1/0 required for the out-of-core solver
also severely inhibited performance. The 1/O for storing stiffness and
other matrices was also a significant factor. Thus, formulating and solv-
ing Equation 3 with the accompanying 1/0, along with some standard im-
provements, were the primary focus of the evaluation and modifications.
In fact, many of the improvements made to the program apply equally
well to a generic engineering workstation as well as a supercomputer.

Solution process. Changes to the solution algorithm branched into
two directions. First, a more efficient direct solver, a Cholesky factoriza-
tion, was used to replace the Gaussian elimination routine being used in
the original program. Secondly, a preconditioned conjugate gradient-like
method was added to provide an iterative solver capability. Various prob-
lem characteristics affected the performance of each method. The
Cholesky factorization routine was developed using @ LAPACK library
subroutine (Anderson, et al. 1990) as a template. Using this new algo-
rithm, the grid was first divided into 64-node blocks. Then, an out-of-
core capability was built around the routine, and minor modifications
were made to take advantage of the smaller local bandwidth of each
block. Also, for an unchanging stiffness matrix between nonlinear itera-
tions, reuse of the factorization from the previous iteration greatly re-
duced the computations required for some problems. Coupled with a
more sophisticated bandwidth minimization routine (Gibbs, Poole, and
Stockmeyer 1976), sigaificant time reductions were obtained for the direct
solution process. (Table 1 shows boti the global and average local
bandwidth using both the original and the new bandwidth minimization
routines.)
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The introduction of the preconditioned conjugate gradient-like methnd
added an iterative solver capability. The reduced memory requirements of
this method eliminated the need for an out-of-core solution. Not as stable
as the direct solvers, the iterative solvers can have problems converging

N
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for poorly conditioned problems. However, for large, well-conditioned
problems, they can perform significantly better than the direct solvers.

I/0. Several changes were made to improve the I/O and memory man-
agement of the program. First, the stiffness matrix was switched from a
banded storage format to a sparse matrix format. This allowed assembly
and boundary condition modifications to be completed in-core and elimi-
nated many of the inefficiencies associated with the out-of-core solver.
This also allowed a simpler transition between the iterative and direct
solvers. The reduced bandwidths also decreased the I/O requirements
for the out-of-core solver, making the use of faster disks more feasible.
Finally, the iterative solver eliminated the need of any out-of-core I/O
time altogether.

General improvements. Enhanced vectorization and other im-
provements in coding were also accomplished. Through effective use of
arrays, redundant work was climinated, and several functions were trans-
formed into level 3 BLAS routines (Dongarra, et al. 1990).

Results. Table | shows the CPU times and I/0 wait times (in seconds)
for the original program, the ..ew program using the direct (Cholesky)
solver, and the iterative (preconditioned conjugate-like) solver. Specific
characteristics of each problem produced the performance differences be-
tween the direct and iterative solvers. In general, however, the iterative
method is preferred for large, well-conditioned problems. The RMA
model tended to produce & poorly conditioned stiffness matrix, resulting
in the iterative method having a difficult time converging. The stiffness
matrix also remained unchanged for all the 48 nonlinear iterations, so sub-
stantial benefit was obtained from the reuse of the initial factorization.
Thus, the direct solver provided the best performance. The aquifer model
was well-condiiioned, greatly improving the performance of the iterative
method. It, too, benefitted from the reuse of the previous factorizations
when using the direct solver, because only the first two nonlinear itera-
tions required a factorization. The net resuli was a comparable time be-
tween the direct and iterative solvers. T .. Cerrillos dam models were
also well-conditioned. However, in neither case did the stiffness matrix
remain unchanged, explaining the superior performance of the iterative
solver.

2-D Versus 3-D Comparison

A very important aspect of this research is to determine whether a 3-D
study is necded in the saturated flow portion of GL's RMA modeling ef-
fort. Figure 12 is a color contour plot showing the difference in total head
values between the 2-D and 3-D results. A 3-D result for a given 2-D
nodce was obtained by averaging the values of head for the seven 3-D
nodes corresponding to the 2-D node. The scale is set this way so that the
: _&.1 plot can be directly compared to another plot described later in this report.
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Figure 12. 2-D versus 3-D comparison

Yellow is selected as the color of no difference. While this is the domi-
nant color, the maximum difference of about 10 ft (3.048 m) exists in
some areas. Some variation is expected, so this amount seems recasonable.
It is important to realize, also, that the boundary ¢onditions arc cssentially
2-D boundary conditions. Head is specified a constant for the entire verti-
cal area where he: -1is known. True 3-D boundary conditions would have,
for instance, a river specified more accurately.
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Grid Display

One of the most important graphics tools to use in doing an FEM
model study is a program to display and edii the FE grid and other input
data. There are many software and hardware options for this, and the
topic may even seem a bit trite to some. However, because the author be-
lieves so strongly in the use of scientific visualization tools not only for
understanding the results but also for ensuring the input data are correct,
this scction is included. Sincce results from the commercial package
MPGS t ave already been shown, what is featured here is a quickly written
(a few days) program called SHOWGRID. This program was written by
Mr. Scott D. Weberg, SVC, for the Silicon Graphics workstation using
J their Graphics Language softwarc. SHOWGRID cau be used to view the
) 2-D grid, its boundary ccaditions, any scaler value, and any negative arca
elemenis. Figure 13 shows a plot of the menus developed with initial
head being plotted for the node values. This can be compared with the
color contour plot from MPGS given in Figure 5. Figures 1 and 2 are also
SHOWGRID plots.

The primary problem that occurs with the grid is negative or badly
skewed elements. Figure 14 shows a typical “bad spot” where the location
of an observation well could have been accidentally moved so much that a
) negative area clement was created (highlighted element 1056). With pro-
grams like SHOWGRID, these errors can be casily spotted and correcied.
What is more difficult, however, is the detection of badly skewed cle-
ments. Figure 15 shows a zoomed area of the grid where an extremely
skewed clement has been created, and Figure 16 shows how this is fixed.
Numerically, skewed elements such as these can cause severe problems,
and they should be avoided. However, the triangular clements turned out
to be much less susceptible to this than the brick elements with coincident
nodes. This is illustraied by the 2-D versus 3-D comparison (Figure 17)
for a grid containing several skewed clements like that of Figure 15. As
before, one would expect some differences in the two solutions, but the
rather large regions where significant differences occur were always
caused by skewed elements in the 3-D grid (the 2-D solutions werc essen-
tially the same for the two cases). In fact, the large area where the differ-
ence is as much as 30 {t (9.144 m) (dark blue region) was coinpletely
turned to yellow by fixing the one skewed element shown in Figure 15.
Figure 12, corresponding to the good grid, can be directly compared to the
nlot in Figure 17 to sec the dramatic ceffect of fixing all such elements.
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Summary and Conclusion

The 3-1 study showed that for a large plan view flow problem where

i essentially 2-D type boundary conditions (a constant head is applied the

| iull depth of the aguifer and fully penetrating wells are used) are em-
nloyed, a 3-D soletion is not usually necessary for the flow computations.
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Figure 13. SHOWGRID menu with initial head values

The 10-ft (3.048-m) maximum difference in head is not significant over
such a large arca. However, if onc wishes to apply more accurately the
boundary condition of, say, a river or do a morc localized study such as in
the case of the Cerrillos Dam analysis, a 3-D solution is required.

Contaminant transport (Chapter 4) is another matter. Even if the flow
is horizontal and the heads arc the same in the z dircction as computed
from a 2-D plan view calculation, a 3-D study is required to get an accu-
rate result for concentration of contaminant. This is because advection
will carry the contaminant horizontally in all directions, and dispersion
will also distribute it vertically.

21
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i Two-dimensional triangular elements are more stable than nine-uode
1 brick elements with coincident nodes with respect to skewness. A 3-D
| . . «
: prism or tetrahedron element should be considered, or a careful examina-
i tion of the 2-D grid is required.
This exercise has also shown that visualization tools are essential when
doing a numerical study to both ensure the correctness of the input data
, and to properly interpret the results. Further, without the use of a large
' scientific computer such as the Cray Y-MP, a full study of a large 3-D
problem is almost impossible. This is especiaily true of time-dependent
nonlinear multipbase flow and contaminant transport computations.
A
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3 Unsaturated Flow
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Introduction

Chapter 2 gave some extensive work using the FEM for saturated flow.
This chapter will investigate unsaturated flow using another computa-
tional technique typically used by the aerospace engineers, which is the
finitc volnme method (FVM). The FVM is very similar (and sometimes
identical) to the finite difference method. The following will be presented:

a. Governing equations. The equations used in this work to model the
unsaturated flow cast in strong conservative form for a curvilinear
coordinate system.

b. Computational procedure. The finite volume equations used to ide-
alize the governing equations and the numerical scheme used to
solve them.

3 c. Comparison of results. Results obtained from this FVM technique
N arc compared with FEM results for various problems, including labo-
ratory tests and analytical solutions.

Governing Equations

B The governing partial differential equation used for unsaturated fiow
for both the (x, y, z) and the (&, n, &) curvilinear coordinate systems will
now be given.

| (x, y, ) equations

, 4 The equation at a given (x, y, z) point in space and time t in matrix
‘ form is
1

VI(k [k )(Vh+ V)} + g =F %’: “@
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where
h = pressure head
[k] = saturated hydraulic conductivity matrix
k, = relative hydraulic conductivity

g = source or sink

F = water capacity given by

do
. F=—— 5
W! ah (5)
:#"’ where 0 = is the moisture content
&
¢ In an unsaturated zone of flow, F and k, are functions of h, making Equa-
4 tion 4 highly nonlinear. Equation 4 is also at times put in terms of the
; total head or potential ¢
5 9=h+z-9, 6
where ¢, = datum
Equation 4, using Equation 6, now becomes
T - p 99
Vilk k]Ve) +q=F py (7

This work uses Equation 7. Different expressions for kr(h) and O(h) are
used as these are empirically based.

& % 0 . &

(gv n, Q equatlons

-
e
R o

The approach taken is to first map a region of gcometry into a (&, n, §)
curvilinear coordinate system. For example, Figure 18 shows three sur-
faces of a circular region of soil aroind a well (G iype grid in 3-D) ihai is
mapped into a square box grid in the (§, 1, {) system as shown in Fig-
ure 19. The inner cylinder at the well and the outer cylinder at the radius
of influence are M = constant surfaces, and the horizontal grid at the bot-

tom plotted using thick lines is a { = constant surface.

E.

[

F .
A SO, TR

Let J be the determinant of the transformation matrix between the two
coordinate systems for a nonmoving grid as follows:

!
2
-
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Figure 19. Square box grid

Appendix A contains derivations for certain equations in the curvilin-
eur coordinate system. Using Equation A16 for the strong conscrvative
form of the divergence of some vector {F}, we have

T T g T 1
IV = 5 ((VETRY) 4 g (VT ) + 5 (V)
(+))]
3
= )Z % (velie)
- i
where &; 1=1,2, 3 represent &, 1, and §, respectively. Equation 9 ap-
plied to Equatlon 7 produces
2 3 2
T
)y % (vt;‘. {kr[k_‘]JVq)}) +Jq = JF 5P (10)
Equation A12 can now be applied to the gradient of the potential to
produce
¢ v 2 o)
= |veT JoVEN  +Jg = F (11)
gljglaél[g{ []ag(q)g)}J q
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Finally, using the substitution
® = Jo (12)

| in Equation 11, the following final result is obtained:

3 3
9 [yer 9 _ _ 590
E E} % (vg, {k,[k,] 3% (¢v¢,)}) +Jqg=F (13)

Equation 13 is the equation used in this FVM research.

Computational Procedure

There are enormous varieties of computational techniques that can be
investigated for the solution of Equation 13. This effort can only choose
| some of the most promising techniqucs and investigate them. The chosen so-
lution wili now be presented, and for simplicity, a 2-D formulation is given.

Finite volume cell

The standard FV strategy is to consider each computational cell an FV
with the unknown variables to be computed evaluated at the center of the
ccll. However, the FEM usually has the value of the unknowns computed
B at the grid points (node points). So, as shown in Figure 20, a modified
[ way of defining the finite volumes (McCormick 1992) is to use the dotted

...............

................

...............

Figure 20. 2-D computational grid
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lines to form cells around the node points. This has the advantage of al-
lowing the identical grid to be used for FEM or FVM, but a disadvantage
is the cells along the boundary have reduced size by one-half or one-
fourth. This problem has, however, been minimized by a judicions soft-
ware design of subroutines.

Discretized equation

To understand how Equation 13 is discretized, first consider the simpler
equation

9 , 99 _ or
%o = a (14)

where p, q, and r are each some continuous function. Let each computa-
tional area be a unit square. Also, an implicit formulation is sought at
time ¢ = (n + 1)Ar with an Euler approximation to the time partial deriva-
tive. Then, multiplying Equaticn 14 by d€dn and integrating over the unit
square of a node at grid point (i, j) gives

hn+l ~ hn
n+1 n+l n+l n+1 ij L
- + — = -
fi+%.j ft—%—.j gi.j+% gl,j—% At (1)

where the one-half designations represent evaluation of information on the
respective edges of the finite volume cell. Traditionally, it is stated that
the value at the node point (center of the cell) is taken as the constant
value over the entire cell, and that is why the integral signs can vanish.
However, a better interpretation is that the value at the node point repre-
sents the average value of the variable over the cell. In like manner,

rather than thinking of the one-half terms as being constant on the line seg-
ments, the only restraint required is that this value represent the average
value on its corresponding line segment.

This same process can now be applied to a 2-D version of Equation 13
to ootain
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Let the remaining partial derivatives in Equation 16 be approximated by
central differences. Then the first term of Equation 16 becomes

T

n+l

T = (Vgr{kr[kx- 5% ((bVE,)})

- iy (17)

= (veT 3 [ks} |

I
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Ar the thira wem of Equation 16 is now

r_ﬂ [ i a n+1
_"ii","( T3 =1Vs {kr[ks] 311" (¢V1’])}). 1,
L. i+,

. 2
ﬁ‘— 1 VeTk 1k n+l v ] (18)
R “5( 3 r[s])“__lj{ Nt o1 Pratje

pras 2

re —vn @t }

. i+1,j-1 i+l,j=1

Define the terms

n+l
(41T = [V&Tkr [ks]). |
i+5.
n+1
(A7) = (W;Tk,[k,l) . (19)
i==J
n+1
()T = (VnTk,lks])_ |
1,_]+§'
n+l
E)7 = ()
hj=73
Then Equation 16 becomes
1 1 |
n+l i+ 1 n+1 .n
=~ Jg -~ — 0
z 2 Ci+m,j+nq,i.j a At Fi,j ®i.j (20)

m=-] n=-1

where the C’s are coefficients that are still functions ot the dependent vari-
able, and thus Equation 20 rcmains a nonlinear equationi. Neverihicless,

the C’s ia a nine-point template format are given in Table 2.
Computation of geometric quantities
The geometric quantities can be computed in a varici of ways. Each

element (Figure Al) is treated as a four-node isoparameiric element.
Thus, the transformation between x and (&, 1) becomes
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Table 2
Nine-Point Template
L O '} g v L A
2 2
_ 8w , 18 1Tve
2 2
0 Ay - (A + A}V {A")TvE
-{B" + B‘}TVn
1 +1
- % Fn
-1 L Ay {5 'vn _ Ao
2 2
,Bve _{B)"ve
2 2
n
m -1 0 1

=@ rl-0 My +1-Mx+E-) My+1-1)x
21
+E-E)m=-nyx;+ G+ 1-8 M-y x,

where

(&, M) = integer values of the computational coordinates for
the first node of the computational ¢lement

X1, X1, X3, and x4 = x coordinates at the node points
1 X2, X3 4 p

A similar expression to Equation 21 exists for y, Terms like
ox _ +1 : 1
-é-g——('ﬂo -Mx+ My +1-mx,
(22)

+ (T] - no)x3 - (Tl - 110)14

can now be computed using Equation 21. Evaluating Equation 22 at the
center of the computational element yiclds

(3—21 =3 0 = ay + - ) @
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Values at the node points are computed by averaging the surrounding
center values (four for internal nodes) using Equation 23. Finally, J, V§,
and V1 are computed using Equations A4, A6, and A7. Matrices such as
those in Equation 19 are first evaluated at the nodes and then averaged to
_ find values for the sides.

"

Nonlinear Iteration

A Although terms in Equation 20 can now be computed, Equation 20 is
i still nonlinear, so some iteration scheme must be adopted. Different
' schemes were considered, including the Picard and Newton schemes (Putti
5 and Paniconi 1992). Presented here is the scheme that worked well for
= the problems tested.
"‘d Modified Newton scheme. Given 2 nonlinear equation
f@) =0 )]

but at the k'th iteration

L5 pret

F@H =0 25)

then a Taylor Series expansion can be used as follows:

F@*Y = foh + (%) AD + .. ) (26)
lk

So a first-order approximation is to set the right-hand part of Equation 26
to zero to yield

__ @ 57
AD = o @7
o k
Now, apply Equation 27 to
1 1
kD . -y
f@ +1) 2 z Cf:;:,j+n¢:'c:rrlt.j+n+‘,q
m=-1 n=-1 (28)
1 k+1
Y, Ff, (ij

(from Equation 20) in such a way as to neglect the partial derivatives of C
and F to obtain
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S % a0l = - S8 @)

i+m.j+n
m=-1n=-1

Solution of equations. Equation 29 can be solved by any number of
direct or iterative techniques, such as forms of Gauss Elimination or the
preconditioned conjugate gradient method. The unknown variables then
can be updated v/ith the process continuing until the update: become so
small that the solution for the current time-step has converged. However,
an under-relaxation type method (the conjugate gradient method will be
tested later) worked well enough for the problems tested. Because of the
nonlinearity, first the Gauss-Seidel type computation

1 1
k+1 _ k
AT = — - AP - z Z C§+m.j+n Aq)f.j
ij m=-| n=-1

(30)
+ ¥

iv

LAY
J Ly

was performed. Then, after results for all nodes have been done, update
using

Okl = @F 4 aaght! (31)
ij ij ij

where a varies between zero and 1. Equations 30 and 31 can be executed

several times before updating the C’s and F, but it was more efficient to

update all data after each iteration. Since only scalar operations are done,

each iteration is very fast. Of course, more iterations will be required, so

only a partial payoff is realized.

Test Problems

Two test problems will now be given to show the sffectiveness of the
soiution presented. Comparison with FEM results will also be made.

Dupuit’s problem

The first problem is the classic problem of steady state, unconfined
flow in an earth embankment with vertical sides and an impervious base
as shown in Figure 21. Water flows frcm headwater to the exit face where
the pressure = 0 line represents the free surface. The embankment is 100
by 100 ft (30.48 m), the headwater level is at 100 ft, and the tailwater is at
20 ft (6.096 m). The exit point where the free surface intersects the down-
stream vertical boundary is 40 ft (12.192 m). Agrid of 1 x 11 =121 nodes
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Figure 21. Dupuit's problem

and 10 x 10 = 100 clements with Ax = 10 ft (3.048 m) and Ay = 10 ft
(3.048 m) was built and run on the developed FV program and a 2-D
saturated, confined/unconfined flow FEM program. Again, because of the
way the FV program was constructed, the identical grid and boundary con-
ditions can be used in both codes.

The 2-D FEM program (2DSEEP) computes “stiffness” type matrices
and then assembles them to form the set of equations to be solved. These
stiffiness matrices are numerically integrated by evaluating the integrand
at certain integration points and then using a Gauss quadrature formula.
Typicaily, 2 x 2 = 4 integration points are used, but because the free sur-
face can go through an element, 2DSEEP uses 4 x 4 = 16 integration
points. The relative hydraulic conductivity is then set to 0.001 for an inte-
gration point with pressure head of less than zero. This integration pro-
vides a smearing process so the transition is not so abrupt.

Since no integration is used in the FV algorithm, a 5-ft (1.524-m) tran-
sition zone was therefore provided where the relative hydraulic conductiv-
ity varied from 1 to 0.001 when the pressure head varied from O to -5 ft
(-1.524 m). Relative hydraulic conductivity was then kept at 0.001 for all
values of pressure head less than -5 tt (-1.524 m).

N 7
s —_— e~

Finally, the moisture capacity F in Equation S is set to zero to eliminate
the time-dependent aspect of Equation 4 for a steady-state solution.

T

Figure 22 shows a comparison of the free surface for the FEM and FV
solutions. Note that they are rather close. Also, the running times of the
two solutions can be compared. It inust be emphasized that the FEM
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Figure 22. Comparison of FEM and FV free surface

technique has significantly more computations t >cause of the numerical
integration process and the solution of a banded system of equations at
each iteration. In general, fewer elements for thc FEM solution are there-
fore needed compared to the FV grid. Also, because a banded system is
solved compared to a relaxation iteration, much fewer FEM iterations are
needed. With these thoughts in mind, the FEM solution took 1 min,

13 sec, and seven iterations on a 486 class PC running at 33 mhz, and the
FV solution took 12 sec with 124 iterations. It should also be observed
that the diagonal terms in the template in Table 2 go to zero for this square
grid, making the formulation similar to a standard finite difference algorithm.

Laboratory tesi problem

Results from an experimerni 1l study of 2-D transient unsaturated/saturated
flow with water table recharge (Vauclin, Khanji, and Vachaud 1979) wiii
now be compared with results from both the FV formulation and a 3-D
transicnt unsaturated/saturated FEM flow code. The problem, as shown in
Figure 23, consists of flow i1 a homogenecous soil of saturated hydraulic
conductivity 35 cm/hr in a tank 600 cm long, 200 ¢m tall, and 5 cm thick
with an impervious bottom. Bccause of symmetry, only 300 cm of the
tank are modeled with the center linc (AF in Figure 23) being treated as
an impervious boundary. A constant pool elevation of 65 cm is main-
tained along BC in Figure 23 with the boundary CDE covered to avoid
evaporation. EF is initially covered and the tank is aliowed to completely
settle. Then EF is uncovered and a flow rate of 14.8 cm/hr is applicd to
the system for 8 hr while holding BC at the constant total head oi 65 cm.
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Figure 23. Laboratory problem
| The relative hydraulic conductivity in the unsaturated resl .a was deter-
mined experimentally to be
-4 (32)
¢ where
A =299 % 10°
B =50
j The moisture content equation was also determined experimentally and by
B the use of a least-squares fit to be e
} 0 =0 —— (33) %
| S o+ (-
;
} where
‘} 0, =0.30 ‘
i a = 40.00 o
l K
| B =290 i
l )
4 Chapter 3 Unsaturated Flow 39 _.;.:
H .|
|




.

EX

T .

[

R, S

40

The grid (shown in Figure 24) consists of a 16 x 16 structured grid
with the intervals slightly diffcrent to align with key points. For example,
the dot is a node at (161, 79) where pressure head data were collected. At
was set to 0.05 hr and allowed to grow 20 percent a time-step until a maxi-
mum of At = 1 hr was rcached. Twenty time-steps were done for a total of
8 hr. The proper subroutine was modified to incorporate Equations 32,
33, and the derivative of Equation 33 (from Equation 5), and thc problem
was run on both the FEM and FV codes. Because of the naturc of the
water capacity curve (Figure 25), the FEM program would not converge,
and the FV solution converged only by using a small a = 0.1 in Equa-
tion 31 for the first few time-steps. The FEM algorithm uses a Picard-
type iteration strategy, while the FV scheme uses the Newton-type
itcration as previously described. However, tabular forms of Equa-
tions 32, 33, and F (27 data points), with F not allowed smaller than 0.001
for large -h, werc used with the FEM code, and convergence was then
achicved. A Picard-type algorithm was implemented in the FV ¢code, and
the same lack of convergence was observed. Newton-versus-Picard itera-
tion is an important research topic, so at least for this problem and im-
plementation, the Newton algorithim is supcrior.

] ] N D D —]

| |

Figure 24. Grid

The results for the 40 time-steps for both the FV and FEM solutions
were then obtained, and the free surface was compared with the laboratory
results as shown in Figure 26. The dissipative error in the FEM solution
is more than that of the IV implementation. F being modeled more accu-
rately in the FV code could have had an impact as well.
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Figure 26. Comparison of lahoratory, FEM, and FV results
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Summary and Conclusions

|
: 1 There are many more problems that can be considered in unsaturated

| flow. There are problems with difficult geometries and heterogencities.
In some cases, the FEM will function better, and in other cases, as has
been demonstrated, the FVM will function better. But it can be concluded
on the basis of this study that alternative techniques such as the FVM can
be a powerful tool for groundwater modeling.
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4 Contaminant Transport

Introduction

Chapter 3 showed the application of the FVM to unsaturated flow with
good results. This chapter will investigate the effectiveness of the FYM
for contaminant t-ansport. There are several higher-order numerical tech-

i niques with one being the Lagrangian-Eulerian Method (LEM) (Yeh
1990). This technique has almost exclusively been used with the FEM, so
Y this chapter shows the results of R&D using both FVM and LEM. The

following will be presented:

a. Governing equations. The cquations used in this work to model con-
-:w-’g taminant transport, including the one used for the LE approach.

& b. Computational procedure. The LE algorithm in an FV environment.

c. Comparison of results. Results obtained from this FVM technique
are compared with FEM results for analytical solutions.

Governing Equations

The governing partial differential equation for cortaminant transport in
unsaturated porous media at a given (x, y, z) point in space and time ¢ is

960 a8 _ (34)
3 +pbat+\7-(vC).—V‘(9D-VC)

~ M(0C + p,5) + QC,,

where

- \ ‘
[ < U S-Sy P |

0 = moisture content

- g

LES
— e R ]

C = material concentration in aqueous phase (M/L.3)
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pp = bulk density of the medium
S = material concentration in adsorbed phase (M/M)
v = discharge velocity vector
D = dispersion coefficient tensor
A = decay constant
Q = source rate of water
C;, = material concentration in the source
For this study, the lincar isotherm model for adsorption is used, which is
S=K,C (35)
where K is the distribution coefficient

The ij’th component of the dispersion coefficient tensor d‘.j is given by

d; = (1) [aT vl 8, + (ay — ap) ‘;:—:1) + a8, (36)
where
ar = lateral dispersivity
a; = longitudinal dispersivity
v; = i"th component of v
ap,, = molecular diffusion coetficient

T = tortuosity
and

37
=0 i#])

Equation 34 can be expanded and combined with Equation 35 to produce

aC
+

d9
© + pbKd) '87

v-VC-i-(—a—+V-v]C
d (38)

=V - (@D - VC) - M0 + p,K)C + QC,

n
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Also, unsaturated flow is modeled by

2

at+v.v=Q (39)

Equations 38 and 39 can be combined to produce the following governing
equation used in this study:

oC
(e+pb1(d)—57+v.\7c:=v-(eu-vc3

- [x (e + ppK, d) + Q:l C + QC,, @0

Eulerian Versus Lagrangian Approach

The typical approach in 2-D is to stay at a given (x, y) position in space
and obscrve phenomena as they pass. This is known as the Eulerian sys-
tem and is represented by Equation 40. Another approach is to have the
observation point move as well at the same velocity as the particles of
fluid (Lagrangian system). The Eulerian approach is modeled using a
fixed grid, and the Lugrangian approach can be handled using a moving
grid with each node point moving at their respective velocities. This can
icad to a skewed grid after a while, so a modified approach (LEM) is used
in this study.

Using the chain rule of differentiation, the change of concentration for
a node in a moving grid is given by

(QQJ _ (B_CJ N [3_6)0 . (agjv (41)
x y

dat o ot b dx dy

where the subscript gp represents grid point, the subscript fp represents a

fixed (x, y) point in space, v_ is the speed of the grid point in the x direc-

tion, and v is the speed of the grid point in the y direction. The first time

derivative is often written with a capital D, and the second time derivative
is what appears in Equation 40, so rewrite Equation 41 as

2L % v ve (42)

where v = grid point velocity vector

Equation 42 can now be substituted into Equation 40 to get

45
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C v
(6 * pbKd) [—D—’ ’ [G +PKy B D] ' VC} 43)

=V .@®D - VO - [x(e + pbKd)+ Q]C +QC,
So if ihe velocity of the grid point is

3 v (44)
T e+ p,K,

then the Lagrangian equation representing contaminant transport becomes

(9+pbKd)DC=V-(OD-\7C)

D 45)

- [x(e + pbKd) + Q] C + QC,

Computational Procedure

It must be emphasized that the resulting concentrations from Equation
45 are for a grid that has moved. Therefore, the following two steps must
be performed in either order:

a. Lagrangian. Compute an advection coatribution using grid point
speeds according to Equation 44.

b. Eulerian. Compute dispersion and other contributions using Equa-
tion 45.

in this work the advection step 1s first.

Lagrangian step

The FV transporn code that was written for this research takes as input
the moisture content and discharge velocity for each node and each time-
step. Therefore, for a given node P (as shown in Figure 27 where both the
velocity components are positive), grid speed velocities at time-step n can
be computed by

n v" (46)

v =
0 +pbKd
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The distance node point P travels during a time-step Ar is

Ar = % (Dn + .Dn-H) At 47
Now if the approximation is made that point P’ travels the same Ar to
reach point P for the time interval Ar (backward tracking), then the advec-
tion concentration C" at time 241 for node P is simply the concentration

at P’. However, the grid velocity at P’ is not in general the same as it is at
P, leading to possible error. A correcting formulation follows,

Computation of C* at P'. As before, assume a four-point isoparamet-
ric finite element formulation for each cell as shown in Figure Al, except
that now let the parameters §, 1 vary between 0 and 1. Then inside each
element

X X X
vl -y 4y 1Y
L= -9a-mik vea-mil
v ¥ v), (48)
X X
LR RPA BN SE R PA
v, vJ,

The more accurate equation for , the position of P’, using Equation 47 is

1 (\)I" + \),"'H)At =7r —7 (49)
2 r
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where

v’ = grid speed at P’

r, = vector centaining the (x, y) coordinates of point P

For the i’th node of the cell, define the quantities

TR

- X - l n+1 (50)
Ri—{},}.—r‘.+ 2(0;'+u‘. )Ax
]
. Applying Equation 48 to the prime variables in Equation 49, using the def-

inition of Equation 50, and collecting terms yields a set of equations to cal-
culate (&', n") as follows:

X, =X, +X; - X)&M + (X, - X))

'__'__ l‘ﬁ“ L ;‘L'

+ X - X' =x, - X, (1)
(V= ¥y + Yy = YYEN + (X, = V)E
L. +(Y4_Y1)nl=yp—yl

Zi Rewrite these equations using constants a, ap, by, by, ¢(, €5, dy, and d, as

afm’ + b8 + e’ =d,

(52)
M+ bE 4o =4,
|
l Cws first of these equations can be solved for n” to yield
oodp - b (53)
n= < + alﬁ'
i .
Equation 53 can now be substituted into the bottom portion of Equa-
_ tion 52 to obtain the quadratic cquation
- ’
(aby — ap) & = (ayd, + bc, - c;b,
. (54)

~da)t - cd, + dc, =0

which can now be easily solved for &’. This done, 1" can be computed
- from Equation 53, and finally, substituting the values of & and 1" into the
C row of Equation 48, the value of concentration at P’ is given.

48
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Determining what cell to locate 2. Figure 27 shows that when both
components of grid speed are positive, the negative x and y direction is
where the proper cell is. Since this FV formulation is on a structured grid,
the process of finding the proper cell is to simply look in the four adjacent
cells by solving Equation 51 for €’ and 1" and selecting the cell where &'
and 1’ are both between 0 and 1.

Eulerian step

The final step is to use ilie C"* values in conjunction with an IV repre-
sentation of Equation 45 to determine the concentration at each node,
Since Bquation 45 is remarkably similar to Liquation 7, a very similar for-
mulation can be used. With the definition

O =JC (55)

the curvilinear coordinate version of Equation 45 is

3 3
y Y - (ver e @VE)! | - MO + p,K,) + QI P
. g, 35 ‘
1 je=1 (56)
DO
+JQC, = O + pK) T
The IV representation is
B 3 riH 1 3 3 141
(V&’ {own 3 «w&)}] _ [V&' {011)1 9, (cwe,)}]
£ L 9E 1
it 5] o
, e ’ ) nA- 1
+ (\75, {9””01 (<bvn)}J o (Vg {Olblbjn(d)Vn)Jj y
2 2
[ "4 1 |
+ Lvn {ewl 5 (wvg)}} N -( {ew] g(cpvg)}) N
it himy (57)
, 7} . 3 ] n+1
- (Vn {OID] ((I)Vn)}) - (an {O[D] 2. (<I>V'.I,~J
L1 on J L. 1
(WK 2 - 5
q)n+l - q,"‘
"4l ne N B ' SV |
- (KOLH. + QJ(D +JQC, = o - A ~4d
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where
a7l =071+ pK, (58)

It is important to note that ®* appears in the time derivative term instead
of @". The exact sarne solution technique used previously can be used
here, except now the system of equations is linear.

Test Problems

Two test analytical problems will now be given to show the effective-
ness of the solution presented. Comparison will be made with FEM
results.

1-D steady-state transport

The problem consists of one-dimensional (1-D) steady-state contami-
nant transport over a length L in a flow of discharge velocity u, a moisture
content 0, and a dispersivity D. The initial concentration C of the contami-
nant is 0. and then a spill occurs, giving boundary conditions of C =1 at
x=0and C=0atx=L. The governing equation is

PC _udc _ (59)
Daxz T 0 =0

and the steady-state solution is

ux  ul (60)
eOD _,0D

Clx) = T
1 - 4136B

The valuc of the variables used are L = 100, u = 0.2, 6 = 0.4, D = 50,
and At = 10. Agrid, 11 x 2, was created with a constant Ax = 10, and the
problem was run on both the FV code and an LE FEM program. The FEM
and FV results were essentially identical, and a plot of the analytical ver-
sus numerical results is given in Figure 28. These results arc certainly ac-
ceptable. However, if uis increased, a finer or adaptive mesh is required
for the same quality result.

2-D translent transport

Tkis problem consists of saturated flow in a rectangular vertical cross
scction of sand of size
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Figure 28. 1-D steady-state results

0<x<a

(o1)
0Sys<L

that is initially clean until a spill occurs on the top of the sand (y = L). A
concentration C, in a strip of length s in the middle of the top of the sand
is maintained for a time ¢y, and then it decays expedientially with a decay
constant «. Water is flowing in the +x direction with a discharge velocity
u. However, no contaminant due to dispersion flows through the bound-
ary at x = a. Adsorption into the medium of bulk density p, occurs lin-
early with a distribution coefficient of K .

The governing partial differential equation is

—— B _H-Mlﬁ—h‘*¥-ﬁ_-4ﬁ_h_f‘ ____mwv_.w_f_..n__

(es+pbKd)%$+u%%=es( 1%%+02%3§J ©2
y
where
0, = maximum moisture content
D = dispersion coefficient in the x direction
F’{ D, = dispersion coefficient in the y direction
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The initial conditions are
Cx y,00=0

and the boundary conditions are

CO y. =0 %f(a, %0 =0

(Cx, Ly=C;, 0<:<y]

Cx, 0,0=0

= o -1)
L—Coe 0 t>1,

-l

As part of this research, the solution to the problem was derived as

cn(=1)yrtl (T, - T) enxsinl[x sinﬂg-y

8nD.,C
Cix, yt) = =
Y RL?
where
P4
R=1+ 6
5
and
u
B = 20 D
s

A, is the ¢’th solution to the cquation

Bsinka + X cosha =0

2% i i .
l=1 n=] 2)'1‘1

(63)

(64)

(65)

(66)

(67)

(68)
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1 {-ﬁ(—i—)[ . (a-—sj a-—3s
. d = —— e B sinA + A cosA
: 2 2
A i l; + 1 2 ! I 2
& (69)
e _ (“—"-‘] . .
j -¢ P2 [B sinkl (—a—;—d] + ?‘1 coskl (y ; "]J}
The two transient terms 7' and 7)) are given by
* . 1 - o)
: T, == (1 = W
9 1 " )
4
B and
) R IR SR S ( I 1 I S Ty - 71
12—{p+a~p‘ 0+“(u_a)c o | Ut to) an
where
. 2.
=1 2, 52 nm '
u-R[l)l(B +- xl)+ DZ(L) J (72)
and
Ut = 1) =0 1<t
(73)
3 =1 t 2 fU

The value of the parameters are given in Table 3. A 21 by 11 grid was
used to solve the problem using both the ViEEM and ¥V codes. Figure 29
shows a compuarison of analytical, FEM, and IV results for position (100,
18) for 10 time-steps wheve Ar = 1.0, A higher level of accuracy can be

[ -
1 fable 3
? Value of Parainete:s
L]
; Co 1.0 a 100.0
j L 20.0 [ 20.0
v - e T e —
s to 10.0 a 1.0
\; Os ~ 0-‘1 Po 1.2
Ky 0.1 u ) 2.0
Ui 50.0 Dz 5.0
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Figure 29. 2-D transient results

achiceved by refining the grid near the top where the concentration is ap-
plicd. However, the current grid is sufficient to show the desired compari-
son of results.

Scientific Visualization

Visualization of contaminant transport analysis results is an important
aspect of understanding the volumes of output data. There are several
techniques used, and there is potential for more research, especially with
the use of translucency. One technique is to take a value of the contami-
nant and create: the 3 1D geometry representing the isolevel and perform a
hidden surface plot. Another option is 10 cul a cross section through the
piume at a particular time and plot a line or color contour of concentration
on the cross section. Figure 30 shows a plume fron a 3-D version of the
above problem at + = 10. The spill now occurs on an s by s square area on
the top of the g x b x L rectangular region of porous media with, in this
case, ¢ = b= 100. ¥iguie 30 contains an isolevel of C = 0.4, a color con-
tour plot of concentration along the vertical cross section, x = 50, and a
color contour plot of concentration along the vertical cross section, y = 50.
As shown in Figure 11 for saturated flow, the surrounding porous media
can be represented using transiucent colors,
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Summary and Conciusions

Asin the case ol upsaturated flow, there are many more problems that
can be considered. There we problems with difficult peometries and heter
opencities. o some cases, the FEM will function beter, and in other
cases, as has been demonstrated, the FVM will function better. But i can
be concluded, as betore, onthe basis of this study that alternative tech-
nques such as the FYAean be a powerful wol Tor groundwater modeling.
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Appendix A
Derivation of Curvilinear
Coordinate Equations

Purpose

The purpose of this appendix is to derive expressions used to cast par-
tial differential cquations in strong conservation form for a curvilinear co
ordinate system, These include the geometric conscrvation law, the
gradient operator, and the divergence operator. 2-1) versions of the equa-
tions are derived for simplicity.

Coordinate System

Each quadrilateral cell or element of a finite volume or finite element
grid is transformed into a square (see Figure Al) {tom an (., v) coordinate
system to a curvilinear (&, n) coordinate system.

, " - )
.: : !' —_———

[}
i

?1 _
y 3 B .
s 4
| g
o
j / 2 . .
i — -
!
.f? Figure A1. Transformation
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Geometric Conservation Law

The geometric conservation law is a basic tool for placing equations in
strong conservative form (Thompson, Warsi, and Mastin 1985)." A matrix
orientcd derivation of this equation will now be given. The chain rule of
differentiation states

o Yy Hd (AD
o oxof  oyodf

where f is a continuous function. The matrix version of this equation is

o) [& ) (¥ (A2)
| _1d€ o] jox
O " |9x 9y |9of
an {Em on| oy
An alternate way is
of| (9§ om| | (A3)

ox| _|ox  ox| |3
o |k |
dy dy Jdy| (dm

Let the determinant of the matrix in Equation A2 be defined by

J=9x0y _0xJy (A4)
ofdn  an g

The inverse of the matrix in Equation A2 can also be multiplied to both
sides of Equation A2 to produce

of 9 _ 9| |9 (AS)
ox| _ 1 om | )k '
a7 ||y
dy on 9| (am
Comparing Equations A3 and AS gives
% 9. (AG)
_Jaxl 1] o
Vo1 T T ax
ay, on

References cited in this appendix are listed following the main rext.
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&
A an _ (A7)
* x| 1T et
=7 o
dy) o

Equations A6 and A7 can now be used to evaluate

] [ A8
XJVE) | AUV _ | 3Edm| , | agom
9 on 3 9% 9%
o%on o&an
It is clear now that
oJVE) a(JVn) (A9)

& am

which is the geometric conservation law.

Gradient
_‘-'l The gradient of f from Equation A3 is
|
- vf = %l+w (A10)
i an
| j Multiplying Equation A10 by J and Equation A9 by fand adding gives
Py
) h
) o A, YY) o, AUVN) (A1)
| ¢ JVf = JVE L + JV
n S T an T St T
41
‘ ;{ Combining terms gives the desired result
” vr = OUfVE) | 9WVn) (A12)
o | JV_] —
el e on :
# ‘
3 ‘I
[ 3
FJj Divergence
! } The divergence of a vector
F
v
| : (A13)
o {F} =
).} y
|
! ' ; Appendix A Derivation of Curvilinear Equations A3 '
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i
:j in matrix notation becomes

¥
-a of of. (Al4)
VIFy = =2 + 22
dx  dy
Now if Equation A12 is modified to the form of an operator, this yields
) a (A15)
JVo=—- (JVE )+ 3 (JVn o
3 UV °) + 3 (Vn o)

Taking the transpose of Equation A15 and operating on {F} gives

9.
an

which is the desired result for the divergence.

NT(F) = 2 @VET(FY) + 2 ovnT (F)) (A16)

d
&

_Lﬁ_ « ° ﬁ o

%
]

. Yo
ey ML E

n,

[ _J_

2 v

[
Y S WL

|
-

. ¥ A4

Appendix A Derivation of Curvilinear Equations




Form Approved

REPORT DOCUMENTATION PAGE OMB No. 0704-0188

Fublic reporting burden for this collection of Information 1y estimated to average | hout per response, including the time for reviewing Instructions, searching existing data sources,
gathering and maintaining the data needed, and COMPIETNg and reviewing the collection Of Information Send ¢ r g this burden estl of any other aspect of this
cotlection of information, including suggestions for reducing this burden. 10 Washington Headquarters Services, Directorate 70¢ Information Operations and Reports, 1215 Jefferson
Davis Highway. Suite 1204, Arlington, VA 22202-4302. anJ to the Oifice of Management and Budget. Peperwork Reduction Project (0704.0 188), Washington, DC 20503.

1. AGENCY USE ONLY (Leave blank) [ 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
September 1994 Final report

4. TITLE PND SUBTI 5. FUNDING NUMBERS
1C

U
Application o éomputational and Visualization Methods to
Groundwater Modeling

6. AUTHOR(S}

Fred T. Tracy
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
U.S. Army Engincer Waterways Experiment Station REPORT NUMBER
3909 Halls Ferry Road, Vicksburg, MS 39180-6199 Technical Report ITL-94-7
9. SPONSORING/ MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING / MONITORING
Assistant Secretary of the Army (R&D) AGENCY REPORT NUMBER

Washington, DC 20315

11. SUPPLEMENTARY NOTES

Available from National Technical Information Service, 5285 Port Royal Road, Springficld, VA 22161,

12a. DISTRIBUTION / AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE
Approved for public release; distribution is unlimited.

13. ABSTRACY (Maximum 200 words)

This report documents basic and applied research in the arca of groundwater modeling. A three-dimensional
finite element method program and model for the real-world problem of flow near Rocky Mountain Arsenal
(RMA) is described, and a comparison with a two-dimensional finite clement method RMA computation is
done to help determine when a three-dimensional analysis is needed. Scientific visualization techniques and
Cray Y-MP improvements developed in this RMA study are described. The finite volume method is applied
to saturated/unsaturated flow and contaminant transport, and the results are compared to finite clement method
sclutions, Nonlinear Newion iteration for unsaturated flow and the Lagrangian-Eulcerian method for contami-
nant transport arc discussed. Experimental results and analytical solutions are used to compare different proce-
dures. Finally, contaminant transport results are viewed using scientific visualization tools.

14, SUBJECT TERMS 15. NUMBER OF PAGES
Containment transport  Groundwater modeling 68
Finite element method  Scientific visualization 16. PRICE CODE

Finite volume method Unsaturated flow

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT
UNCLASSIFIED UNCLASSIFIED
NSN 7540-01-280-5500 Standard Form 298 (Rev 2-89)
P;easclloﬂzed by ANSI Std Z39-18
2 .




